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ABSTRACT

A comprehensive set of measurements has been made in a ballistic
range which permits the sphere drag coefficient to be derived with an
uncertainty of approximately 2 percent in the flight regime
0.1 <M,< 6.0 and 2 x 10! < Re, < 107 for T, /T, = 1.0. Sufficient
information is also presented to predict the effect of wall temperature
on sphere drag cocefficient when Ty, /T, # 1.0 for 2 <M, < 6. This in-
vestigation represents the most comprehensive experimental program
to date to definc sphere drag in the velocity-altitude regime applicable
to the falling sphere technique for defining upper air density.
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NOMENCLATURE

Frontal area of sphere, 7rd2/4
Speed or sound

Drag coefficient

Friction drag coefficient

Afterbedy pressure drag coefficient
Forebody pressure drag coefficient
Free-molecular drag coefficient
Drag force

Diameter of sphere, (dmaox + dmin)/2
Mach number, V/a

Mass of sphere

Pressure

Impact pressure

Ideal, inviscid impact pressure

Gas constant

Reynolds number, pVd/u
Temperature

Time

Velocity

Velocity drop (for 75 ft of flight between shadowgraph
stations 1 and 6

Distance
Density

Viscosity

Conditions immediately downstream of normal sheck wave
Sphere surface
Free-stream conditions

Shadowgraph station interval, i = 1to 6, j=2to6

vii
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SECTION i
INTRODUCTION

Falling, spherically shaped, pressurized balloons are extensively
used for atmospheric probing { Ref. 1). These probes can be used to
determine several properties of the upper atmosphere (horizontal winds,
density, temperature, and pressure), the most important property being
atmospheric density. The velocity of descent of a sphere of specified
size and weight at a particular altitude is a function of the density of the
atmosphere at that altitude and the drag coefficient of the sphere at
those conditions. Density is inversely j>roportional to the ballocn drag
coefficient and can be inferred if that drag coefficient is known.

For several years the Air Force Cambridge Research Laboratory
has conducted falling sphere atmospheric soundings between the aititudes
of 140 and 30 km. Two different kinds of balloons have been used, and
the motion of each is measured by a different method. One probe is a
l1-m-~diam Mylar® passive sphere, ROBIN, whose space-time positions
during its fall are measured with precision ground-based radar. The
second balloon is an "'Instrumented Sphere' whose falling moticn is
measured by on-board accelerometers. These two balloons have dif-
ferent fall rates and trajectories. Figure 1 (Appendix I) is a Mach
number-Reynolds number envelope of typical trajectories of the two
types of halloons.

The need for further sphere drag measurements arose from two
sources, namely:

1.  The results of previous spilere drag tests, by many
experimenters and using a variety of test facilities, are
not always in agrecment.

2. Falling spheres experience some M_-Re, values for
which drag coefficients are not available.

It is for the reasons stated above that the present sphere drag study was
undertaken. The investigation has been conducted in the M_-Reg, range
defined in Fig. 1 according to the AFCRL specified priorities.

Tpe pf‘esent sphere drag investigation was undertaken in the
von Karman Gas Dynamics Facility (VKF) of AEDC. In an acroballistic
range, sphere drag coefficient was measured for a broad range of Mach
number (0. 12 < My < 6. 39) and Reynolds number (15 < Re, < 50, 300).
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SECTION 1l
AEROBALLISTIC RANGE

The aeroballistic range testing was conducted in the Hyperballistic
Range (K). This range is a variable density, free-flight test unit that
is used for aerophysical testing and for classical aerodynamic tests,
notably the measurement of drag. The aeroballistic range consists
basically of two tanks, a pumping system, a launcher, and several in-
strumentation systems.

2.1 RANGE K

The range tank and blast tank are 6-ft-diam stcel cyiinders con-
nected by a short spool piece containing a high vacuumn valve which per-
mits isolation of the two tanks (see Fig. 2). The 14-ft-long blast tank
is situated between the launcher and :he range tank. The blast tank is
used .0 absorb the expanding muzzle gases, and it is in this chamber
that the model is separated from the sabot which adapts it to the bore
of the launcher. Once separated from the sabot, which is stopped in
the blast tank, the model flies through a 3-in. -diam hole in the spool
piece and into the range tank.

The range tank is 100 ft long and is equipped with the instrumenta-
tion necessary to make the desired test measurements. Shadowgraph,
schlieren, temperature, and pressure instrumentation systems are
permanently installed. Flight is terminated by model impact on a thick
plate at the end of the range tank.

A three-stage vacuum pumping system provides the desired range
pressure. ['he blast and range tanks have independent pumping sys-
tems which facilitate testing at low pressures because the range tank
can be kept isolated at low pressure while the launcher is being pre-
pared for the next shot. IFor this test, all shots were fired with the
blast and range tank pressures equal.

Three diiferent launchers were employed in achieving the desired

range of velccities, 0.2 <M, < 6.0:
L}

1. Cold-Gas Gun - Most of the spheres for which M, < 1.7
were launched with a single-stage, cold-gas pneumaiic
launcher using helium as the driving gas. This launcher
is essentially the same as that used by L.awrence (Ref. ?2)
in an earlier VKF gphere drag test,
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! 2, 2u-mm Cannon - The majority of the spheres for which

M, > 1.7 were launched with a 20-mm-diam, smooth-

! bore, single-stage launcher. Buruirg gunpowder sup-
plied the driving pressure.

i 3. Rufle - A few shots were made with a 30-cal, rifled-
bore, single-stage, powder-driven launcher.

! Launchers 1 and 2 were usud for 92 percent of the shots.

2.2 RANGE INSTRUMENTATION

" Six dual-axis spark shadowgraph stations record the model position-
time history for each flight. These stations are located at nominally

v 15-ft intervals along the range tank. Optical axes at each station are

‘ mutually orthogonal with the range centerline. The shadowgraph con-
sists of a pinhole spark source on one side of the range and a Fresnel
lens and camera on the other side. Except for the Fresnel lens, the
shadowgraph system components are external tu the range tank. The
spark has a duratiou of 0. 1 usec; therefore, this is the effective ex-
posut @ time of the shadowgram. A shadow detector is used to trigg:r
the spark when the model is near the center of the shadowgraph field of
view. When the spark is initiated, a signal is sent to a multichannel
digital event chronograph which i1 ccords the times of successive shadow-
gram exposure. The Fresnel lenses bear scribed fiducial grids, and
the stations have been surveyed accurately as to orthogonality and spacing
so0 that model position can be determined in real space with respect to
master range axes. This survey has been further refined by calibration
shots with spheres of high density material fircd into a hard vacvum

] (AV = 0) at velocities which minimize time-position uncertainties.

Gas temperatures in the range tank are mecasured by means of
mercury-in-glass thermometers and by copper-constantan thermo-
couples read out on a strip-chart recorder. A pair of these probes is
located near each of the six shadowgraph stations.

In order to ensure that the air in the raage is sufficiently dry, dew-
point temperature is measured with a hygrometer located near the center
of the range tank. Dry air can be supplied by the VKF high pressure
bottle {H20 < 100 ppm) or from a source of pure breathing air
(H9QO < 30 ppm).

A high sensitivity, single-pass schlieren photographic system is
available for visualizing the model flow field. The viewfield diameter
is 12 in., and the system is operable in either single-frame or multiple-
frame modes.

3
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All gages used to measure pressure in the range are connected to a
large stainiess steel manifold which can be isolated from the range tank
and kept under hard vacuum when not in use. As many as six gages can
be connected to the manifold. For this test three types of gages were
used:

1. Hass Mercury Manometer - This instrument is used
over the pressure range from 15 to 760 torr. It has
a resolution of 0, U5 torr.

2., Micromanometer - This is an oil-filled, U-tube
manometer with which VKF has considerable experi-
ence. It is used for measuring pressures between 0. 1
and 15 torr. Resolution of the micromanometer is
0. 00075 torr,

3. Baratron® - This is a variable-capacitance pressure
iransducer which has a small internal volume. The
volume of the other two instruments is large and they,
therefore, do not respond as rapidly as the Baratron to .
a changing pressure. The Baratron has two sensing heads:
1 torr and 30 torr. This permits the measurement of
pressures from 30 torr down to approximately 104 torr.
Baratron resolution is 1 x 1074 torr for pressures above
10 torr and is 1 x 1072 torr for pressures below 10 torr.

Insofar as possible, these pressure gages are calibrated with standards
traccable to the National Bureau ol Standards (NBS). In pressure regions
where no NBS standard exists (p << 1 torr), calibration is accomplished
by reasonable extension of existing standards and by means of a VKF -
built calibrator described in Ref, 3, Since Ref, 3 was written, a new
calibrator has been built to closer tolerances, and greater precision is
now possible. The calibrator itself has been thoroughly checked against
the NRS standards where possible. Calibration of all the gages was per-
formed before, during, and after this test in order to ensure the greatest
possible accuracy in the pressure measurement,

2.3 MODELS AND SABOTS

The variety of iiphere materials and sizes used in the range test are
listed in Taule 1 (Appuendix II) and illustrated in Fig. 3. Whenever pos-
sible, spheres of a conventional material were used. Commercially
available, precision grade, standard spheres were chosen in order to
ensure high quality surface finish and to minimize nonsphericity. The
spheres were then individually insnected and measured at AEDC. The
variety of spheres used was necessary in order to oroduce the ¢ ~sired
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Revoolds mouber and Mach number at a velocity drop, AV, of between 1
and 6 percent of the average veloceity, V.,

Fhe minimum model size of 3/32-in, diameter was the smallest
that could be reliably detected by the present shadowgraph triggers.
This sive Limitation, along with the desire to maintain &V between 1
and 6 percent, establishes the minimum Reynolds number at which tests
can be conducted with conventional model materials. Models of molded
Dylite® woere used to overcome this limitation, Dylite is a foamed
plastic that was used by VKIY in the manufacturing of spheres whose
density ranged from 1 to 6 1b/ft3, References 4 and 5 discuss the
original use of Dylite in the manufacturing of lightweight models and the
measurement of Cpy with these models. The use of these lightweight
foam models allowed testing at lower Reg, while maintaining the desired
model deceleration. The lower Reg, limitation for Dylite models was not
reached in this test,

Several sabot designs were used during the course of this test.
Typical examples are shown in Fig., 3. Except for a few Dylite and
partially Dylite sabots, all were made of Lexan®, A different method
of separating the sphere from the sabot was employed with each of the
three launchers, PFigure 4 illustrates these stripping methods.

SECTION 111
RANGE SPHERE DRAG MEASUREMENT

3.1 THEORY

The equation of motion of a sphere in free flight is simply Newton's
Law written as follows:

D=ma=1/2pV2CDA (1)

Using the relationships p = pRT and A = 7/4 d2 and substituting in
Eq. (1), it can now be written

dv 7T p V2 CD d2
M o = e e (2)
dt 8RT
or, solving for Cp ’
T
Cp = 2221 (av/an) (3)
TpdéV

Making the substitution
1/V (dV/dt) = dt/dx - dV/dt = dV/dx

A TN .
: AP

. - - : . N
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Eqg. (3) takes the form

cp = 2B BT 4y /an) (4)

1rpd2V

It is shown that drag coefficient can be obtained if the sphere mass,
diameter, velocity, and deceleration and the range temperature and
pressure are known. These quantities can all be measured in a range
experiment.

3.2 METHOD

Before launching, the sphere is cleaned, inspected, weighed, and
measured to determine its surface finish quality, ma<e and diameter.
The sphere is then launched into dry air at a known . «ssure and tem-
perature. Position-time measurements are obtained during the flight
of the sphere, and then velocity and deceleration are derived from these
data. The sphere mass, diameter, and malerial and the range pressure
are varied in order to produce the desired Reynolds number at a given
veclocity and to keep the velocity drop between 1 and 6 percent.

3.3 DATA REDUCTION

The sphere image on the shadowgrams is read with a digitized film
reader, and the resultant numerical values are converted, by means of
a computer program containing the range shadowgraph system survey,
into real space positions. These model positions and the associated
timing values are used to calculate the average velocity between zll pairs
of adjacent shadowgraphs (Vj ;41 fori=1to 5). In addition, average

velocities over a two-station interval (Vj j42 for i = 1 to 4) are calcu-

lated. This second sct of velocities has only half of the uncertainty in x
and t, compared to the first set, since the total distance and time are
doubled.

A least-squares straight line is computer fitted to the velocity-
position data. Figure 5 is a typical example of this fitting. By fitting a
straight line to these data, the assumption is made that Cpy is a constant
during the flight. This assumption is quite valid for this test since the
model velocity drop, AV, was less than 6 percent of ti:e midrange
velocity. The value of V used in the computation of Re, and Cp and the
value of dV/dx used in the computation of Cp are taken from the fitted
line. In this data reduction, Eq. (4) is used to calculate Cp.
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Another data reduction method is also ugsed on the position-time
data. The time-position relationship of a model in free flight can be
represented by a cubic equation in distance, viz

t=ao+.a1x+aéx2+a3x3

This equation is computer fitted to the time-position data by the method
of least squares. In this case the deceleration is not assumed constant.
If the model undergoes a large percentage velocity drop, this treatment
of data is required. Reynolds number and Cpy are computed from values
of V and dV/dt taken from the fitted cubic. In this treatment, Cp is
calculated from Eq. (3).

Although the cubic fit was not necessary for the treatment of
position-time data on this test since 0.01 < AV/V < 0. 06, both linear fit
derived and cubic fit derived values of M_,, Re,, and Cp were computed
for all shots. To verify the contention that the linear fit is adequate if
AV/V < 0,06, differences in linear and cubic fit derived values of
M,, Reg, and Cp were obtained for seven shots where 0.058 < AV/V <
0.073. These shots were picked because these differences will increase
with increasing AV/V, For all seven shots, the differences in M, and Re,
were less than 0,01 percent and for Cp were less than 0.1 percent.

3.4 MEASUREMENTS AND UNCERTAINTY
3.4.1 Distance

As explained in Section 4, 3, downrange position is determined from
the shadowgrams. The results of past Range K shadowgraph station sur-
veys and calibration shots in conjunction with-check calibration shots
fired during the course of this test show that the maximum error in model
position (flight distance) is less than 0. 0025 in. The flight distance be-
twcen adiacent shadowgraph stations is nominally 15 ft,

3.4.2 Time

The digital event chronograph associated with the shadowgraph sys-
tem provides timing values with a resolution of 1 x 10™ ! sec. The maxi-
mum error in the time of flight between adjacent shadowgraphs is
+1 x 1077 sec (0.1 usec). For this test, interstation flight time varied
between 1.1 x 10% usec (M, = 0.12) and 2.1 x 10% usec (Mg = 6. 39). The
timing error is not cumulative. The maximum error in the total time of
flight is also 0. 1 usec.
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3.4.3 Velocity

The velocity used in the computation of Cp and Re, is the midrange
velocity as derived from the linear fit to the Vj, j an’ x data. The maxi-
mum error in Vi j4+1 is 0.03 percent. On this test, shots were rejected

if the maximum [( Vi, i+1 computed from x,t data) - (Vi j+1 from curve

fit)] was more than 0, 025 percent of the midrange velocity. This maxi-
mum velocity error was less than <0. 02 percent on 95 percent of the
shots. The midrange velocity, used in calculating Cp and Re,, is known
to an uncertainty of less than 0. 02 percent, since it is obtained from a
curve fit to all the velocity-position data. The velocity range on this
test was from 136 to 7250 ft/sec.

3.4.4 Deceleration

Deceleration is one of the least accurately known quantities. Where-
as small perturbations around the true values of x and t produce very
small changes in velocity, such perturbations can produce a relatively
large change in dV/dx. An analysis of », t, and dV/dx errors indicates
that for the wide range of shots made during this test, the maximum
possible uncertainty in deceleration can be greater than 1 percent,
However, the x, t, and V accuracy on the majority of the shots is such
that the uncertainty in dV/dx should not exceed 1 percent.

3.4.5 Mass

Sphere mass was determined on either of two analytical balances or
on a torsion balance. The choice was dependent upon sphere mass.
Great care was taken in the handling of the spheres, and they were
weighed after they had been cleaned and their diameters measured.
Balance zero was checked betore each weighing, and each sphere was
weighed several times. For spheres of m < 0.021 gm (those weighed on
the torsion balance), a class M standard weight of approximately equal
mass was weighed before and after each sphere weighing. Uncertainties
in the measurement of sphere mass are as follows:

0.900023 gm for m > 0.5 gm

.00016 gm for 0.14 <m <0U.5 gm

. 00005 gm for 0.05 <m <0.14 gm
. 00002 gm for 0.015 <m < 0.05 gm
. 00001 gm for m <0.015 gm

oo C O

3.4.6 Diameter

Two instruments were employed in the measurement of sphere
diameter. Spheres of conventional materials were measured with a
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light wave micrometer whicii has an accuracy of £0. 00001 in. Since
this instrument applies mechanical pressure to the sphere during
measurement, this technique is not suitable for the foam spheres.
These were measured with a microscope which has an accuracy of
10,0001 in. Several measureinents were made on each sphere in order
to determine the maximum and the minimurmn diameters. The diameter
used in the calculation of Cp and Re, was the average cf these two
diameters., Spheres of conventional materials were selected such that
the uncertainty in diameter attributable to nonsphericity was always
less than 0. 1 percent of the diameter. For the foam spheres, the un-
certainty in diameter attributable to nonsphericity was 0.5 percent for
d = 0,25 in, and 1,0 percent for d = 0. 125 in,

3.4.7 Temperature

Range temperature, at any probe location, is most accurately
determined by the mercury-in-glass thermometer which has a maxi-
mum error of +0. 1°F, The thermocouple temperatures have an
accuracy of £0. 5°F and were used as a check on the thermometer tem-
perature readings in order to determine that there were no {ransients
at the time of the shot. Even without noticeable transients at any probe
location, there usually exists a slight gradient in temperature along the
length of the range. The temperature at any probe location never dif-
fered from the average of the six temperature measurements by more
than £2°F, This maximum variation yields an uncertainty of no greater
than 0. 38 percent in absolute temperature. Average range temperature
on this test varied between extremes of 63. 2 and 83.8°F, but was
normally between 73 and 79°F,

3.4.8 Pressure

The pressure variation of this test was from 538 to 0. 034 torr,
This required the use of all three types of gages listed in Section 2. 2.
The use of each gage was limited to that pressure range over which it
had the greatest accuracy. Where pressure ranges for more thun one
gage overlapped, each was read. The difference in pressure between
gages was no greater inar 1.0 percent even at the end of a particular
gage's range. This does not necessarily imply a pressure uncertainty
of 1.0 percent since the pressure reading of the gage not at the extreme
of its pressure range would be the more accurqte. The maximum un-
certainty in pressure i* no greater than 1 percent for p > 1 torr., For
pressures below 1 torr, the uncertainty increases with decreasing
pressure and reaches a maximum no greater than 2 percent at
p=0.034 torr.

9
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3.4.9 Drag Coefficient

The uncertainties specified above are maximum possible uncer-
tainties. Maximum probable uncertainties would be less than or equal
to these values. The maximurmn probable uncertainty in drag coefficient
attributable to uncertainties in the measurements are as follows:

A% L. 02 percent

T 0. 28 percent

dV/dx 1.0 percent

m 0.1 to 0. 3 percent {conventional materials)

0.5 percent (1/4-in. -diam Dylite)
1. 0 percent (1/8-in, -diam Dylite)

d 0.2 to 0. 3 percent (conventional materials)
1. 0 percent (1/4-in. -diam Dylite)
2. 0 percent (1/8-in. -diam Dylite)

p 6.5 percent (p_ > 1 torr)
1.0 percent (0,1 <p_ <1 torr)
2.0 percent (p_ < 0.1 torr)

As can be seen from the data in Figs. 11la through h and 111 through v,
the scatter around the fitted curve is such that Cp is certainly deter-
mined to within 2 percent for Re, > 200. Below Re, = 200, the scatter
increases because of increasing pressure uncertainty for all conditions,
but the scatter becomes noticeably worse only when Dylite models are
used. In spite of tae increased data scatter, the greater number of
shots fired at these conditions and the method of data treatment
(Section 5. 1) results in values of Cp that are probably correct within
t2 percent even down to Reg = 20.

3.4.10 Reynoids Number

The accuracy of Re, is dependent upon the uncertainties in P_ T, V,
and d. The maximum probable uncertainties in Re, are as follows:

0. 8 percent for Re, > 200
1. 2 percent for Rey, < 200

3.4.11 Mach Number

As M, depends only upon V and T, the maximum probable uncer-
tainty is 0.2 percent.

10
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SECTION IV
DISCUSSION OF EXPERIMENTAL RESULTS

4.1 AEROBALLISTIC RANGE DATA

The results of the present test program for 0.1 < M, <6.0 and
2x 101 < Rey, < 10° are listed in Table II and are presented in Figs. 6a
through v as the variation of drag coefficient with free-stream Reynolds
numbers for discrete Mach number intervals. Also shown in these
figures are the results of sphere drag measurements presentec in
Refs. 2, 5, and 6 through 12. No attempt has been made to ensure that
this listing of references is complete. These data were selected be-
cause the ratio of the model wall temperature to free-stream tempera-
ture was approximately unity, as is the case for the ballistic range data
contained herein.

At subsonic speeds (Figs. 6a through j), the present data are in
good agreement with those obtained by Lawrence (Ref. 2) in the same
facility. The data contained in Refs. 6 and 7 for subsonic velocities are
consistent with the data obtained in the present investigation ( Figs. 6a
through j). For supersonic velocities, the data available from a variety
of sources (Refs. 5 and 6 through 11) arc also consistent with those ob-
tained in the present investigation (Figs. 6k through v).

Curves have been faired through all of the available data at the
discrete Mach number intervals listed in Figs. 6a through v. An aver-
age Mach number has been assigned to each of these Mach number
intervals (e. g., for interval 0,19 <M, < 0, 27, M“’av = 0, 23) and cross-

plots of Cp versus Mach number have been derived at fixed Reynolds
numbers (Figs. 7a through d). The symbols shown in Fig. 7 are not
experimental points but are values derived from faired curves in Figs, 6a
through v, It is from these crossplots that drag coefficients should pe
derived. An estimaticn of Cp at Mg = 0 is shown in Appendix 1V,

It is evident from a consideration of the data contained in Figs. 6a
through v that for Re, < 100 the spread in the experimental values of Cp
increases. In general, measurements in this regime were obtained with
ultralight spheres and at ambient pressures less than 100 uHg. Several
factors contribute to this spread -- larger uncertainties in model weight
and diameter, model distortion, and pressnure.

From an examination of the measurement errors discussed in
Section 4.4 and the consistency of the experimental data (Figs. 6a
through v), indications are that the total errors in sphere drag coeffi-
cient derived from the faired curves are no greater than +2 percent.
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4.2 SPHERE DRAG COEFFICIENTS AT SUBSONIC SPEEDS

An accurate knowledge of the drag coefficient of a sphere at low
subsonic speeds is of interest in the ROBIN Falling Sphere program.
From a consideration of the possible falling sphere trajectories (Fig. 1),
a knowledge of the sphere drag coefficients for 0.1 <M, < 0.5 and
103 < Reg, < 5 x 104 is required.

Before 1930, many measurements of the drag of a sphere falling
through various fluids were made, and a body of information was
generated for 10-1 < Re, < 106, It was considered that these data gave
the level of the incompressible drag coefficient of a sphere in steady
nonturbulent fleow. Usually these data, which have a significant degree
of scatter, are represented by a single line which is called the ''standard
drag curve.' This curve has appeared in many textbooks and reports at
least as far back as 1931 (Ref. 13). (No attempt is made here to deter-
mine its exact origin.)

The '"standard drag curve'' for the range of interest of the ROBIN
Spheres is shown in Fig. 8. Also shown in this figure are two examples
of the early data upon which this curve has been based (Refs. 14 and 15),

Heinrich, Niccum, and Haak (Ref. 16) made some sphere drag
measurements in a wind tunnel for 0.078 < M, < 0. 39 and 2 x 103 <
Regy <2 x 104, These data are compared with the standard drag curve
in Fig. 8 and are shown to be significantly higher than the standard
values. Sivier (Ref. 17) has measured the drag of magnetically sup-
ported spheres in a wind tunnel with a free-stream turbulence intensity
up to b percent. These sphere drag values (cf. Fig. 8) are also signifi-
cantly greater than the standard drag values. Zarin (Ref. 18) refined
the magnetic balance system used by Sivier (Ref. 17) and varied the
free-stream turbulent intensity level. He obtained some sphere drag
measurements at free-stream turbulent intensity levels of less than
1 percent. These values are shown in Fig, 8. For Re, > 103 these
values are still significantly greater than the standard values. For
Re, < 103 these values are in good agreement with the standard values.
From his study, Zarin concluded that small degrees of free-stream
turbulence were the cause of his higher-than-standari drag values.

Also shown in Fig. 8 are the present drag values from Fig. 6b. It
can be seen that these values are in reasonable agreement with the
standard values for 5 x 102 < Re, < 104, It is reasonable to assume
that the ballistic range data are representative of a free-stream turbu-
lent intensity level approaching zero. If the effects of turbulence shown
by Zarin ‘Ref. 18) are correct, then it might be inferred that some
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consideration of the scaling of free-stream turbulence intensity level
may be necessary before sphere drag coefficients from turbnulent test
facilities can be applied to a particular falling sphere in the atmosphere.
It is an experimentally demonstratable fact that turbulence can affect
the critical Reynolds number where boundary-layer transition occurs.
The critical Reynolds number is that Reynolds number for which the
drag coefficient decreases sharply and passes through Cp = 0. 3 as

Re, increases. Increasing degrees of turbulence have been shown to
reduce the critical Reynolds number for Re, > 10° (Refs. 19 and 20)
and to increase Cp in the area 100 < Re, < 1000 (Ref. 18). Millikan
and Klein (Ref. 19) found that the critical Reynolds number for a sphere
in free flight in the atmosphere was not affected by varying atmospheric
turbulence structure. This result was explained by the fact that the
scale of the turbulence in the atmosphere is large compared with the
boundary layer on the sphere. It would seem reasonable to assume that
if the critical Reynolds number of a free-flight sphere is unaffected by
the full-scale turbulence, then the drag conefficient at subcritical
Reynolds numbers would also be unaffected by turbulence.

As a matter of interest, there appear to be inconsistencies in the
literature as to the effect of free-stream turbulence upon drag coeffi-
cient. Zarin (Ref, 18) indicates that his and Sivier's (Ref. 17) greater
than ''standard values'' for sphere drag can be explained in terms of
turbulence, intensity, and scale. However, Probstein and Fassio
(Ref. 21) explain Ingebo's (Ref. 22) lower than standard values of drag
in terms of turbulence in the flow. Actually, depending on the particular
Reynolds number regime, it would seem that turbulence cculd either
raise or lower Cp.

4.3 EFFECTS OF COMPRESSIBILITY ON SPHERE DRAG COEFFICIENT

As in the case for the subsonic velocities, there is a generally
accepted curve (Fig. 9) which has been used to indicate the effects of
cornpressibility upon sphere drag coefficient. This curve appears to
have originated with Hoerner (Ref. 23) and has been repeated in several
references since (e. g., Refs. 1, 17, and 18). The form of the varia-
tion of sphere drag coefficient with Mach number (Ref. 23) was based
upon several sets of data for 0 < M_ < 1. 0 obtained before 1946 (in-
cluding, for example, the ballistic range data of Ref. 6). The curve is
characterized by a pronounced dip in the drag coefficient at M_, = 0. 85,
Unfortunately, the ballistic range test (Ref, 6) did not obtain data for
0.65 <M, < 0.85. An inspection of the remaining data (Ref. 23) upon
which this curve (Fig. 9) was based indicates that the curve fitted to the
data may not, in fact, be the best fit to the data. This is confirmed to

13
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some extent when Naumann's data (Ref. 7) is considered in Fig. 9. It
can be seen (Fig. 9) that these data agree with Charters' and Thomas'
data (Ref. 6) and do not show a dip in drag coefficient at M, ~ 0. 85.

The reason for presenting the above discussion is to examine the
validity of the dip in light of the present results. If the form of
Hoerner's curve is accepted, then to some extent his explanation for
the reason for the dip is accepted (cf. Ref. 18). Hoerner's explanation
for the dip is that it is attributable to ""a favorable interaction between
the local supersonic field of flow existing at and behind the location of
the cylinder's (sphere's) maximum thickness and the flow pattern within
its wake.' If this reasoning is accepted, then for lower subcritical
Reynolds numbers a curve with similar characteristics would be ex-
pected. None of the summary curves shown in Fig. 7 indicates that
this occurs. To indicate that the effect has not been obscured by the
smoothing procedure used in deriving the summary curves, the data
obtained for 1930 < Re, < 2080 are shown in Fig, 10. These and
Naurnann's (Ref. 7) data are sufficiently well defined to state with some
certainty that there is no dip in the Cp versus M, curve for M, ~ 0. 85,

4.4 TRANSONIC SPHERE DRAG COEFFICIENTS

There appear to be very few experimental measurements of
sphere drag in the transonic speed regime. The data contained in
Figs. 6a through 1l and repeated in the summary curves in Figs. 7a
through d represent the most comprehensive set of results in this
speed regime. From a consideration of the data presented in Fig. 7
for 2 x 101 < Re, < 108, it is apparent that the form of the Cp versus M
variation at 0.9 <M, < 1.1 is a function of free-stream Reynolds num-
ber. For high Reynolds numbers (i. e., Re, > 105), there appears to
be a smooth transition from subsonic to supersonic drag values. For
2 x 102 < Re, < 104, there is not a smooth transition from subsonic to
supersonic drag values. For 2 x 10! < Re, < 2 x 102, the change
from subsonic to supersonic drag values is accompanied by relatively
large changes in Cp for small changes in M_.

@

The significance of the e results is that they indicate a basic diffi-
culty in measuring sphere drag at M, = 1.0 in a short ballistic range
such as the VKF 100-ft Range K. The reason for this is that a velocity
drop of at least 10 ft/sec is required to derive an accurate drag coeffi-
cient at My = 1, 0. This means that for Mmavg = 1, 0 the Mach number

varies from 0.996 to 1.004. At low Reynolds numbers in this speed
regime, it is not completely valid to assume that Cp is constant, and
the VKF 1000-ft range (Hyperballistic Range (G)) would be required in
order to accurately detect the Cp change tor a AV of only 10 ft/sec.

14
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In Fig. 7 the slashed line in the region of M, = 1, 0 represents the
authors' best guess as to the value of Cp. In applying these values to
the full-scale sphere, a reduced degree of confidenc= should be ascribed
to upper air uensity values obtained when M, = 1.0.

As an item of general interest, Appendix III presents schlieren
photographs of sphere shock wave development at transonic speeds.

4.5 SUPERSONIC SPHERE DRAG COEFFICIENTS

A review of Figs. 6k through v reveals that there is a limited amount
of data in the 1.0 < M, < 6.0 regime from other sources for Ty, /T, = 1.0
(Refs. 5, 6, and 8 through 12). These data provide a good indication of
the variation of drag coefficient with Reynolds number at a fixed Mach
number for Re, > 104, With the exception of some data obtained at
1.45 <M, < 1.85 and 200 < Rey, < 300, these data are also in good agree-
ment with present data for Re, < 104,

It is of interest to consider the form of the Cp-Re, curves shown in
Figs. 6k through v. The total drag coefficient of a sphere can be written
as the sum of drag components attributable to forebody pressure, after-
body pressure, and friction, viz

Cp = Cppr + CpPB + CDF

The forebody pressure drag (Cppp) of a sphere can be derived from
the pressure distribution over a hemisphere (cf. Refs. 23 and 24). Clark
(Ref. 24) has derived a simple expression for forebody drag

Cppp = 0.901 - 0,462/M,2

This derivation is in good agreement with Hoerner's (Ref. 23). Frcm a
consideration of the experimentn! measurements of stagnation pressure
on source-shaped bodies by Sh¢ nan (Ref. 25) shown in Fig. 11, this
pressure term would be expected to be essentially constant for

Re, > 3 x 102,

Lehnert (Ref. 26) has measured the afterbody pressure drag of a
sphere over a range of Reynolds numbers. Taese data are shown in
Fig. 12, Some afterbody pressure drag values have been derived from
these curves for Reg, = 106 and are reported with some similar, more
recent data by Jerrell (Ref. 27) in Fig. 13. The two sets of data are in
good agreement.
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Also shown in Fig. 13 is the summation of the two terms Cppp
and Cppp compared with the ballistic range values of total drag. The
small difference between these two curves is representative of the
friction drag component which for a sphere at Re, = 106 would be ex-
pected to be small,

At supersonic speeds and for 104 < Re, < 109 the sphere drag
coefficient decreases as the Reynolds number decreases from 10° to 104,
e. g., Fig. 6o. As noted earlier, the value of Cppp is subs‘antially
constant over this range of Reynolds nurubers. With decreasing
Reynolds number the friction drag component, Cpp, increases. Thus,
the decrease in CpT must be explained in terms of a decreasing value
of ChpB. This is in agreement with Lehnert's (Ref. 26, Fig. 12)
measurements of CppPB in the wind tunnel, which show a similar varia-
tion with Reynolds number.

4.6 EFFECT OF MODEL WALL TENPERATURE AND
ACCELERATION ON SPHERE DRAG

In determining the correct drag coefficient to use in the supersonic-
hypersonic speed regime, attention must be paid to the wall tempera-
ture of the sphere. The effect of wall temperature upon the viscous
drag of a sphere at near-continuum flow conditions has been theo-
retically demonstrated by Davis and Fliigge-Lotz (Ref. 28). Hayes and
Probstein (Ref. 29) present equations showing the effect of wall tem-
perature on drag coefficient for free-molecule flow conditions. On the
basis of this information and several experimental studies, it is obvious
that the drag coefficient in the transition regime between free-molecule
and continuum flow conditions is a function of wall temperature.

Discussions with Messrs. Wright and Morrissey of Cambridge
Research Laboratory, who are interested in the passive and instru-
mented spheres, respectively, have indicated that they expect the wall-
to-free-stream temperature ratio of these spheres to be close to unity
over the entire trajectory. Thus, for subscale experimental data to
ccrrectly simulate the full-scale event, this temperature ratio shouid
be near unity. With few exceptions, none of the available supersonic
wind tunnel data obtained to date has fulfilled this requirement.

The ballistic range data obtained both here and elsewhere for
1.0 <M, < 6.0 have been obtained over relatively short flight distances,
and consequently no appreciable model heating would be expected.
Therefore, it has been assumed, on the basis of approximate calcula-
tions of the heating rates, that the ballistic range data c¢- “respnnd to
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the condition where the wall-to-free-stream temperature ratio is unity.
When the ballistic range and full-scale spheres operate at conditions
where Ty, /T, = 1.0, it is possible to use the ballistic range data
directly for the fuii-scale drag values. To determine whether small
changes in wall temperature could affect the drag coefficient signifi-
cantly, a study was made of several sets of data (Refs. 5 and 30
through 39), where Ty /T, # 1.0. These data are shown in Figs. 14a
thrcugh f. The data are plotted with Cpy as a function of Reg where
Re> is considered to be a better parameter for comparison than Re,
when M, > 1. Some of these data (cf. Figs. 14e and f) fall outside the
Mach number limits of the p-esert investigation but are included to
illustrate the consistent effect of wall temperature upon sphere drag
coefficient.

For Figs. 14 and f, the Ty, /T, = 1.0 data have been derived from
VKF ballistic range data reported in Ref. 5, together with some hitherto
unpublished data obtained between 1965 and 1969. Sphere drag data for
8.5 <M, < 21.5 are snown in Figs. 15a through c. At low Reynolds
nurﬁbers there is more scatter in these data than there is for the present
investigation. These data, together with the results of the present in-
vestigation, are summarized in Fig. 16. It is from Fig. 16 that the
Tyw/Te = 1.0 data shown in Figs. l4e and f are derived.

Figure 14a demonstrates the consistency of experimental meas-
urements from a variety of sources. The exceptlion to this good agree-
ment is the data presented in tabular form in Ref. 34 derived from

P

University of Minnesota data referenced in Ref. 1.

All of the data (Figs. 14a through f) show that at a fixed Reynolds
number the drag coefficient increases as Ty, /T, incresses. To illustrate
this effect more clearly, the data contained in Fig. 14 have becn re-
plotted as Cp versus Ty /T, at various discrete values of Reg in Figs. 17a
through f. The variation of drag coefficient with velocity and wall tem-
perature has been defined theorectically (c¢f. Ret. 29) in the free-molecule
limit, and the results are summarized in I'ig. 18. As the free-molecule
limit i3 approached. the form of the variation of drag coefficient with
wall temperature shoutd approach that which exists in the free-molecule
limit. The Mg = 2.0 data contained in Fig. 17a is the most complete
set of data from which to establish the effect of wall temperature. 1t is
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evident from these data that when Cp 2 0.7 Cpypp the temperature
effects upon drag coefficient approximate those which are predicted
theoretically in the free~-molecule limit. Therefore, the curves that
have been faired through the data in Figs. 17b through f have been
based on the assumption that when Cp 2 0.7 Cpp) the form of the Cp
variation with T, /T, is that given by theory in the free-molecule limit.

In Figs. 14b, ¢, and e the Cp versus Re, variation for Ty, /T, =~ 1.0
is shown as a solid line and a dashed extrapolation. The dashed posi-
tion of these curves has been derived from data obtained for Ty, /T, > 1.0
shown in Figs. 17b, ¢, and e.

In discussions with J. Morrissey of AFCRL, it was indicated that
there was an interest in obtaining some estimates of sphere drag at
Rey, = 1.0. Using the data contained in Figs. 14a through f and 17a
through f, some engineering extrapolations outside the scope of the
experimental data have been made to satisfy this requirement. The
resiult is given in Fig. 19. Obviously, there is an increased uncertainty
in these values of drag coefficient,

Tne results that have been discussed in this section have been ob-
tained in (1) ballistic ranges where the deceleration mayv be h'gh, e. g.,
>100 g; (2) free flight in wind tunnels where the acceleration is low,
0[1 g]; and {3) models mounted on a balance in a wind tunnel where
there is no acceleration. The cffect of acceleration on the drag of
spheres and cylinders has been investigated by several authors
(Kefs. 40 and 41.) Any differences in the measured drag coefficients
discussed here can be shown to be caused by differences in wall tem-
perature. This suggests that acceleration (or deceleration) has had no
effect upon the sphere drag coefficient for the levels encountered in the
balligstic range during these tests.

4.7 EFFECT OF SURFACE IRREGULARITIES AND MODEL SCALE
ON DRAG COEFFICIENT

The ROBIN Sphere has six dimples in its surface caused by the
holddown points of the internally mounted radar reflector. An approxi-
mation to these surface irregularities has been made on some spheres
launched in support of this test program. Also, an investigation has
been made of physical model scale at one gpecific condition. The results
are listed below,
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Mq Reg Cp Surface d, in. Material
0, 268 10, 625 0,412 Smooth 1,00 Nylor
0, 263 10, 386 0.412
0, 261 10, 353 0.411
0,264 10, 118 0.420
0,253 10, 121 0.419 Dimpled
0, 263 10, 088 0. 420
0. 253 10, 081 0.416
0, 246 b, 884 0.42¢ Smooth 0. 25 Steel
0. 246 9, 871 0,419 Smooth 0. 25 Steel

These results indicate that for the conditions of this investigation there
are no sigrificant effects of scale or surface irregularity on sphére
drag coefficient which is seen to vary only 21 percent from the mean

in all cases represented in the above table. Sivier (Ref. 17) tested
some moderately roughened spheres at Re, < 2 x 103 and found no effect
upon the sphere drag coefficient at M, = 0. 16.

4.8 DRAG COEFFICIENT AT RIGH SPEEDS

As can be seen from Section 5.6, there is not a large body of ex-
perimental data concerning the effects of wall temperature upon drag
coefficient., Consequently, to make use of as much of the available
data as possible concerning the effect of wall temperature, it has been
necessary to consider data at speeds higher than that required in the
present invesligation. This has resulted in the derivation of Cp versus
M, curves at fixed Reynolds numbers shown in Fig. 16.

At first sight, the form of the Cp versus M, curve at low Reynoids
numbers appears to exhibit an unexpected variation. However, it must
be remembered that Knudsen number is a more realistic indicator or
the approach io the free-molecule limiv rather than Reynolds number.
In fact, Knudsen number is proportional to M, /Re,. This means that
for Rey = 20 the Knudsen number at Mg = 20 is twice that for M = 10,
This in turn means that the M, = 20 c¢ondition is closer to the free-
molecule limit than the M = 10 condition even when Re_, is the same.
This explains why the high Mach number drag values are closer to the
free-molecule limits than the low Mach number, values.

SECTION V
CONCLUSIONS

Measurements have been made such that reliable values of sphere
drag coefficient mayv be derived for any value of M, and Re, for
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T, /Te = 1.0 within the bounds 0.1 < M,, < 6.0 and 2 x 10} < Re, < 10°
with an uncertainty no larger than £2 percent.

Based on these and other published data, there is sufficient informa-
tion contained herein to predict the effect of wall temperature on Cp
when Ty /Ty # 1.0 for 2,0 <M_ < 6. 0.

From the present results and those obtained elsewhere, no meas-
urable effect of acceleration upon drag can be detected, and, therefore,
no effect is expected under the conditions of the ROBIN and '"Instrumented
Spheres'' programs.

A brief invesiigation of model scale and surface irregularities indi-
cates that for M = 0. 25 and Re, = 104 no effect on drag could be
measured.

There is reasonablie agreement between the present low speed data
(M, <0.25 and Reg < 104) and the classical data which has resultzad in
the derivation of the "standard drag curve.' Any differences in the two
sets of data riay be explainable in terms of velocity differences in the
basic data.

The present investigation represents the most comprehensive experi-
mental program to date to define sphere drag in the velocity-altitude
regime of interest in the ''falling sphere' programs for measuring upper
air density. It is believed that the present Cp, M,, and he_, map is the
most accurate produced to this time.
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N 4

s tpeln

a. Cold-Gas Gun Sabots

b. 20-mm-Cannon Sabots

¢. Rifle Sabot

r Size and Material of the Spheres, from left to right,
respectively, are as follows:

1-in. -diam Nylon

1/2-in. -diam Copper

7116-in. -diam Dylite

3/8-in. -diam Stain'ess Stee!
V4-in. -diam Aluminum
1/4-in. -diam Beryllium-Copper
1/8-in. -diam Lexan

3/32-in. -diam Nylon

d. Typical Spheres Used in this Test ’
Fig. 3 Sabots and Spheres
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q [ (o]

! ! |

1 2 3

MODEL AND SABOT TOGETHER IN LAUNCH TUBE.

2. MODEL AND SABOT SEPARATED AFTER SABOT STOFPED IN
LAUNCH TUBE.

3. SPHERE GOES ON DOWN RANGE.

a. Cold-Gas Gun Stripping

Y./}
Erf e :
|
1 2

1. MODEL AND SABOT 10GETHER IN LAUNCH TUBE.

2. MODEL AND SABOT SEPARATED AFTER PASSING THROUGH
PIN OR WASHER STRIPPER.

3. SABOT STRIKES ANGLED RAMP AND DEFLECTS VERTICALLY,

4. SABOT STRIKES CATCHER PLATE - SPHERE PASSES THROUGH
HOLE AND ON DOWN RANGE.

!—l

NI

b. 20-mm-Cannon Stripping

e O, 1%
1 1\ @

1 2 3
MODEL AND SABOT TOGETHER IN RIFLED LAUNCH TUBE.

2. PETALLED SABOT SPREADING UNDER ACTION OF CENTRIFUGAL
FORCES. '

3. SABOT ARRESTED BY CATCHER PLATE - SPHERE PASSES
THROUGH HOLE AND ON DOWN RANGE.

(o)

!.-‘

c. Rifle Stripping
Fig. 4 Model Separation Techniques Used in Range K
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Fig. 5 Typical Least-Squares Linear Fit to Velocity-Distance Data
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Fig. 6 Variation of Sphere Drag Coefficient with Reynolds Number
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a. 0.2<M. <19
siation of Sphere Drag Coefficient with Mach Number
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SPHERE MATERIALS ANDT;?ZBELSE L'JSED IN THE RANGE TEST
Diameter, in.
3/32 1/8 1/4 3/8 7/16 1/2 1
Copper v v v
Beryllium-Copper v
Steel N v Vv
Aluminum v v
Nylon v v vV v v
Lexan®x v
Dylite® #x v v J

*L.exan, a registered trademark of the General Electric
Company, is of density slightly greater than nylon.

**Dyliie, a registered trademark of Sinclair Koppers Company,
is an expandable styrofoam.
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TABLE 1l
PRESENT EXPERIMENTAL SPHERE DRAG DATA

e B e w0 W

0.12<M, <0.18 0.28 < Mg < 0.42 0,57 < M, < 0,63
0,159 | 186,327 0.42.:1 "2,230] 0.410 ‘BTEBE'VTIQTZSE 0.506 |
0156 | 15,924 | 0.418 11,224 | 0.416 | 0,593 | 50,230 0.507 |
0. 143 | 14,634 {0,415 148,561 ] 0.474 0.594 | 49,111 | 0.504
0. 149 2,337 | 0,388 48, 365 0,473 0.588 4-8,827 0.501
0.129 | 2,027 | 0. 409 48,631 0.472 | 0. 502 | 49,216 | 0.503 |
_n]_.u:_ i ._4?' ﬁ-s_-f 0.474 “3370 18,894 | 0.465

| 19,767 | 0,445 0,620 | 20,301 | 0,475
| 20,239 | 1448 | 0.607 | 20,060 | 0.478
| 0.570 | 4,762 | 0.424
| 0.590 | 4,945 | 0.441

5,270 | 0.

10, 763
10, 641

bt

0. 141 | 10,93

—(‘).il_Hj

0,243 | 47,854 0. 461

0. 701 1,998 | 0.492

_;T';;);—_ 1,985 | 0,497
0.707 | 1,009 | 0,547
| 0.708 | 1,013 | 0543

B 0.550
a0 4'—7‘77]

10, 890

1 0,389
0, 884 | 0.420
. 88e | 0420 |
9,871

10, 605
10, 386

b. 254 »—10, l_l'i
(o.253 | 10, 121 |
0.259 | 10, o8n |
0.253 —IHO. ng1
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TABLE !! (Continued)

[ M, [ TR TG lI [M ] Re, [ v | | M Res ] ¢ ]
0.79 < M, < 0.83 0.98 < M, < 0.998 1,08 <M, <1.19
’ n.‘ﬁéj 2048 | 0.554 ] 0.998 | 1074 9,935 1,108 | 1843 | o.898
0826 | 2041 | 0.557 | ["0.985 | 1966 0.812 11001 817 | 0,924
0,833 2083 0.561 r.‘OA 983 5042 0.697 _?]-!ﬁ 1061 0. 994
0.809 | 988 | 9 610 0.982 | 488 | o0.993 1,087 | 1954 | 0,893
| 0,916 | 1019 0.623 | 0,993 | 198 1. 265 1.148 | 5194 | 0827
0.794 | 1004 | 0.602 | o.989 | 108 1.204 1130 | 5117 | 0,817
0,736 | 4890 | 0.504 0.386 | 107 1. 144 113 | 5179 | 0,832
0.805 | 5022 | 0.514 | 0.997 | 508 1.n34 1.187 | 827 | 0.914 |
0820 | 162 | 1.0 1003 <M 51,07 1.122 | 463 | 1.082
088 < M. % 0,95 Mot [ 2006 . 861 1117 a18 1.071
0.918 | 2035 | 0.637 | 1.030 | 207€ | 0.858 1113 | 222 1. 302
0.917 | 203 | 0. Bas | :1;019 2060 | 0.u59 [T o | o 1. 289
0.927 | 2051 | 0,649 1.0 .31 1103 | 0465 1,105 | 550 1,042
0.936 | 1047 | 0.723 [ V.ozs | 1022 2. 925 Lorr | ae8 | 1.0m
0,918 | .oz4 | 0,708 1.055 | 1055 | 0.91%2 | 1.116 | 307 1. 059 |
0.928 | 1035 | 0.711 1,028 | 1088 | 0.949 | 1.165 |  47.7] 1.907
[ 0.000 | 998 | 0.712 1,014 | 1006 0.950 1. 145 46.9 | 1.908
T0.895 | 998 | a.707 | 1,001 | 996 0.962 | 1. 181 97.8 | 1.528
| 0.900 | 997 | 0.716 | 1023 | 501 0.7 1. 164 95.7 1 1.648
0.879 | 4849 | 0.559 1,012 | 5035 0.752 | | 1os4 | 8.8 | 1016
0.911 | 5063 | 0 501 1.045 | 4746 | 0.760 1 Y04 98.51 1.613 |
0,923 | 471 | 0.821 1.058 | s27 | 1.001 | 1. 106 | 5027 0.796 |
0,952 | 487 | 0.874 1. 038 | 206 1,252 | 1,140 | 2101 | 0.937
0,91(;~ 465 0,824 :—17(1_7.2;“‘:7—._71_1*.97;7 “lnlh_t 18,6 | 2,381
0. 951 474 0.884 Ajiﬂf 92.1 Al_-ﬁ_ﬁ-“ﬁ L22M, <18
0,418 184 L(“)El;— _l_'g‘iq_,_g.?'ﬁ _‘;Eién _1“.7:..‘17 1985 0,948
| 0.927 82,41 1.518 1.004 | 5042 9._'i’gLJ 1.256 | 2086 0. 961«
_of?mz args | 0.555 | 1.067 | 4842 0.770 | 1.195 | 1988 0.939
0.894 | 4952 | 0.554 | 1,214 | 5070 | 0.8v2
:9. 950 | 1899 | 0.673 1,208 | 5019 | 0.8¢3
0.86 = Mg, = 0.7 1. 211 504 i.109
(0,967 | 2041 | 0.793 200 | 19w 1. 244
[ 0,963 | 1050 | 0,745 L213 | 203 | 1.3m
:;‘.‘98{;4 1034 | 0,850 ] 1.219 200 L 336 |
0.957 | 4v25 | 0.643 ! 1.204 | 183 1. 376
0455 | 460 | 0.886 | 1.300 T | 162 |
0.860 | 476 | 0.915 1.250 | 1676 | 0,096
| 0973 | 201 | 1.080 1,208 | 42,2 | 1.a23 |
0.673 | 18¢ | 1,041 1. 275 95.7 | 1.635
0.967 | 191 | 1.ou8 | ) Y 1es | 19,4 703 |
0.959 | 191 | 1.093 T
}
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TABLE tl {Continued)

78

) -1 :7'1;!9 "j' I

J S RN

1. 018

Vet

)

1,210

e e T ]

1,65 <M, < 1.85
{654 ] 1,404 [1.070

1,944 1. 017
1,062 1.007
L

LCe7 1104t |
780} 4,500 0. 961 |
‘ 0.952

0. 966
1.197

1694 | 11,779 | 0,937

1. 656
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TABLE Il (Continued)

M [ R —Tcp | LM [ ore T on ] LMo [ Be ey ]
LMy 2,2 2.8 <M, 53,2 3.8<M, <4, 2
2.128 516 1.223 2,024 | 4, 833 1,008 P—._.;zs 4, 845 n.966
2, 146 524 1,197 2.871 | 4,767 1. 005 4.135 | 10, 255 0.945
1.860 | 4,947 0. 983 2,989 | 1,964 1,045 4.017 | 4,964 0.967
1.947 | 1,925 1,086 2.940 | 1,938 1. 045 4.175 | 2,068 1.038
2.052 | 2 047 1.043 3. 063 507 1,195 3.808 | 1,908 1. 040
2,171 | i, 088 1.104 3. 072 506 1. 192 4,004 | 1,978 1.030
2.076 205 1. 369 3. 042 509 1. 189 R. 056 978 1. 001
2. 100 526 1.252 3. 044 509 1,179 4.930 | 1,006 1. 064
2,150 _1, 081 1.124 2.998 992 1.129 3.492 | 4,837 0.987
1.972 | g6l 1,130 | 2,991 989 1.125 4,243 522 1.110
2.111 | 1,042 1.124 2.991 196 1. 308 3.958 487 1. 146
2. 082 512.  |1.245 | 3,090 202 | 1. 300 4. 104 202 1.268
2,128 104 1.484 3. 086 201 1, 346 4.081 16.2 | 1,573
2,067 104 1.440 | 2.859 189 1. 356 3. 867 488 1. 143
| 2.109 214 1.371 2,998 994 1,126 4. 099 509 1.150
2,105 105 1462 | 2,970 197 1,182 4,062 50,0 |1.473
2.031 1, 347 1. 098 | ;.saa 4,812 1.012 4.063 20.4 1,657
| 2.082 204 1.380 | 2.907 961 1.135 13,918 19.5 | 1.516
2,137 529 1,232 3,171 21,104 | 0,944 Ls. 993 50.5 | 1,407
2.177 | 216 1.332 2.817 186 | 1. 332 Lq.uos 50.0 | 1,407
2.204 | 110 1.467 3. 185 207 4. 070 20.7 [1.574
2.013 498.7 {1 55 —5_555 | 1:7*— 4. 085 20.8 (1,538
2.035 50.3 |1 611 3.062 | 99,8 4, 060 201 1.246 |
2. 114 42,0 |1,087 2,764 91.8 3.091 103 1,327
) 3.135 51,7 (3. 924 97.2 | 1,320
R 45,3 | 1.423 3. 960 49.8 | 1.486
3030 | s0.0 | 159 4. 250 105 1,431
2941 | 1o.8 | 1,825 ] 4. 153 50.2 | 1.485
2.895 | 7.6 ] 1,867 -
3341 I 2141708
2986 | 50.4 | 1. 483
EB&? " s0.8 |1 500
3 633“"""2?.?JFI.ZE
T 2
2,940 18.0 | 1,795
| 3.038 20.0 | 1,760 |
2.518 1001|1139 2,045 | T 1e.8 | 1686
..? 584 506 1 1!4'—7— T T
2649 | 1089|1128
2,543 504 1.226
2.419 192 1.357]
2. 447 187 1,358
2.535 99,9 | 1,396
2,743 46.2 | 1,574
2. 704 54.2 | 1.549 .
| 2. 650 21.0 |1.818
2. 477 18.3 |1.860
| 2604 | 55.3 1,557
2.541 ‘*5:.0 1.570
2.649 | 20,9 ];—5201
79
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TABLE Il (Concluded)
N I = R S M e

4.8<M, <5.2 5.8< M, <6.2 Odd M,

4,822 5.920 | 9934 | 0.940 0.648 | 22 041 | 0.480

4.781 5.782{ 1987 1.025 0.691| 5,736 | 0,477

4,849 5.800 | 9552 | 0.948 (0874 | 4,841 | 0.542

5,023 5.784 | 9290 | 0.047 1.860 | 1,865 | 1.053

5,193 5.836 | 4871 | 0.950 1.492 | 4,670 | 0992

1 =]
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APPENDIX Il
DEVELOPMENT OF SHOCK PATTERNS AT TRANSONIC SPEEDS

The following schlieren photographs are included in this report as
an item of general interest. These pictures show the development of
bow and wake shock patterns for a 0. 25-in, ~-diam nylon sphere traveling
at speeds near M, = 1. For these conditions, 1050 < Re, < 1250.

Nip = 0.993 f
Wake Shock

-

Flight Direction

Bow Shock Wake Shock Bow Shock
Mg = ). 012 Mg = 1.023

Wake Shack
Fig. 111-3 Development of Ghock Pattamns at Transonic Speeds
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Fig. l1i-1 Concluded

Sy P Ve




At n

gyt P

P
e __me s o

.

Po—

e — o ———

Drag Coefficient, Cp

AEDC-TR-70-291

0.9 T T TTTITTT T T~ T T TTTTT 1 T 1T TT1TT]
0.8 } .
0.7 |- -
0.6 | i
0.5 F _1
0.4+ ,
0.3 Al Lty 114t taal I I I W

102 10° id

Free-Stream Reynolds Number, Rey

10°

Fig. 1V-1 Extrapolation of Ballistic Range Data from M, = 0.15 .

toM_ =0

83

D WRE - T 3 R b et

Rt e SR e

A

£



UNCLASSITFIED
Security Classification

DOCUMENT CONTROL DATA - R & D 1

(Security clasaification of title, body of abatrect and indexing annotation must Le entersd when the overall repozt is classilied)

\. ORIGINATING ACTIVITY (Cotporate author) 28, REPORT SECURITY CL.ASSIFICATION

Arnold Engineering Development Center UNCLASSIFIED

ARO, Inc., Operating Contractor 25, GROUP
Arnold Air Force Station, Tennessee 37389 N/A

3. REPORT TITLE

FREE-FLIGHT MEASUREMENTS OF SPHERE DRAG AT SUBSONIC, TRANSONIC,
SUPERSONIC, AND HYPERSONIC SPEEDS FOR CON' “UUM, TRANSITION, AND
NEAR-FREE-MOLECULAR FLOW CONDITIONS

4. DESCRIPTIVE NOTES (Type of report &nd Inclusive datos)

Final Report, November 13, 1969, through June 19, 1970

8. AUTHOR(S) (First name, middle Initial, last name)

A. B. Bailey and J. Hiatt, ARO. Inc.

6. REPORYT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

March 1971 20 [ 41

8a. CONTRACT OR GRANT NO. 9c. ORIGINATOR'S REPORT NUMBER!'S)
F40600-71-C-0002

5. PROJECT NO. AEDC-TR-70-291

6682

c. Program E]. ement 65701F ob, S'I.Hrl‘:.;o:)zﬁon? MO(8) (Any other numblers that may be aseigned
a ARO-VKF-TR-70-281

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale;
its distribution is unlimited.

11. SUPPLEMFNTARY NOTES® 12. SPONSORING MILITARY ACTIVITY
Air Force Cambridge Research Labo-
ratories (CRER), L. G. Hanscom
Available in DDC. Field, Bedford, Massachusetts 01730

13. ABSTRACT

A comprehensive set of masurements has been made in a ballistic
range which permits the sphere drag coefficient to be derived with an
uncertainty of approximately *+2 percent in the flight regime
0.1 < My, < 6.0 and 2 x 10! ¢ Re, < 109 for Ty/Teo = 1.0. Sufficient
information is also presented to predict the effect of wall temperature
on sphere drag coefficient when Ty/Ty, ¥ 1.0 for 2 < M, ¢ 6. This in-
vestigation represents the most comprehensive experimental program
to date to define sphere drag in the velocity-altitude regime applicable
tc the falling sphere technigue for defining upper air density.

DD 2%.1473 UNCLASSIFIED

Security Classification




UNCLASSTYFIED
~Becurity Classification

1e.
KEY WORDS

LINK A ° LINK B

LiINK ©

RO & wT ROLE wT

ROLE wT

atmospheric density
rarefied gas dynamics
spheres

drag

transonic flow
hypersonic flow
ballistic ranges

UNCLASSIFIED

.ocurlty—aullﬂcauon




